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Abstract. In an earlier contribution to this journal [M.M.R. Williams, Eur. Phys. J. B 47, 291 (2005)],
we derived an integral equation for the transmission of radiation through a slab of finite thickness which
incorporated internal reflection at the surfaces. Here we generalise the problem to the case when there is a
source on each face and the reflection coefficients are different at each face. We also discuss numerical and
analytic solutions of the equation discussed in [M.M.R. Williams, Eur. Phys. J. B 47, 291 (2005)] when the
reflection is governed by the Fresnel conditions. We obtain numerical and graphical results for the reflection
and transmission coefficients, the scalar intensity and current and the emergent angular distributions at
each face. The incident source is either a mono-directional beam or a smoothly varying distribution which
goes from isotropic to a normal beam. Of particular interest is the philosophy of the numerical solution
and whether a direct numerical approach is more effective than one involving a more elegant analytical
solution using replication and the Hilbert problem. We also develop the solution of this problem using
diffusion theory and compare the results with the exact transport solution.

PACS. 05.60.Cd Classical transport

1 Introduction

The transmission of radiation through turbid media has
been of considerable interest for many years. It is assum-
ing even more importance now because of the development
of tissue scanning devices which employ infra-red radi-
ation. The interpretation of the scans requires ever more
sophisticated models and mathematical procedures. In our
earlier work [1], we have derived an integral equation for
the scalar intensity of radiation and its associated angu-
lar distribution. It is the purpose of the present work to
show how an analytical solution to that equation may be
obtained and to compare the practical aspects of solving
the analytical equations with that of a direct numerical
assault on the original equation. Accurate results are ob-
tained for a range of physical parameters and these are
compared with those arising from diffusion theory. In ad-
dition, for more generality, we have derived the equations
necessary to deal with the case when there is a source inci-
dent on each face of the slab and each face has a different
Fresnel coefficient.

a All correspondence to 2a Lytchgate Close, South Croydon,
Surrey, CR2 0DX, UK.

b e-mail: mmrw@nuclear-energy.demon.co.uk

To clarify further some practical implications of this
work, we refer the reader to work done by Nieuwenhuizen
and Luck [2] and a more extensive review by van Rossum
and Nieuwenhuizen [3]. These works concentrate on the
skin layer in the neighbourhood of the slab boundary
where diffusion theory breaks down. Methods are devel-
oped based upon the ‘thick slab’ problem, where the in-
teraction between the boundaries is neglected. A num-
ber of results which modify the diffusion theory boundary
conditions are developed and enable diffusion theory to
be used with greater accuracy. The present work, whilst
not analytically based, extends the validity of that ap-
proach. Reference [3] in particular extends the work to
non-planar problems and enables the effects of local in-
homogeneities, such as spheres embedded in slabs, to be
studied by the concept of the dipole moment. Reference [4]
by Luck and Nieuwenhuizen, further developes the diffu-
sion approach and treats inhomogeneities by multipole ex-
pansions, with appropriate modifications using transport
corrections when the inhomogeneities are small compared
with a mean free path. Finally, we note a very interest-
ing application of one-dimensional transport theory to the
study of the visual effects of art glazes as arising in the
study of ‘old masters’ [5]. Applications of the theory can
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lead to the discovery of the nature of the pigmentation
embedded in the oil binder. Of course, our present work
does not refer directly to these practical problems but it
does provide a measure of their accuracy.

2 Theory

We may write the equation of radiative transfer for the
angular photon intensity φ (τ, µ) for isotropic scattering
as [6],

µ
∂φ (τ, µ)
∂τ

+ φ (τ, µ) =
c

2

1∫

−1

dµ′φ (τ, µ′) ≡ c

2
φ0 (τ) (1)

where c = Σs/ (Σs +Σa). The scattering cross section is
defined by Σs and the absorption cross section by Σa. We
have tacitly assumed isotropic scattering but by means
of the transport approximation [6], the above theory still
applies provided we make the following replacements:

τ → x [Σs (1 − µ̄0) +Σa] , c→ Σs (1 − µ̄0)
Σs (1 − µ̄0) +Σa

(2)
where µ̄0 is the mean cosine of scattering of a photon.

The boundary conditions associated with equation (1)
which describe internal reflection are

φ (0, µ) = R1 (µ)φ (0,−µ) + q1 (µ) ; µ > 0 (3a)
φ (a, µ) = R2 (−µ)φ (a,−µ) + q2(−µ) ; µ < 0 (3b)

with R1(µ) the reflection coefficient and q1 (µ) the incident
distribution at τ = 0 and R2(µ) and q2 (µ) for the face at
τ = a. Following the method used in [1], equation (1) may
be integrated and, together with the boundary conditions,
leads to (for µ > 0)

φ (a, µ) =
1

1 −R1(µ)R2(µ)e−2a/µ

×
[
q1 (µ) e−a/µ + q2 (µ)R1 (µ) e−2a/µ

+
c

2µ

a∫

0

dτ ′φ0 (τ ′)
(
R1 (µ) e−(a+τ ′)/µ + e−(a−τ ′)/µ

)]

(4a)

φ (0,−µ) =
1

1 −R1(µ)R2(µ)e−2a/µ

×
[
q2 (µ) e−a/µ + q1 (µ)R2 (µ) e−2a/µ

+
c

2µ

a∫

0

dτ ′φ0 (τ ′)
(
e−τ ′/µ +R2 (µ) e−(2a−τ ′)/µ

)]
(4b)

and the following integral equation for the scalar intensity
φ0 (τ),

φ0 (τ) =

1∫

0

dµf (µ)
1 −R1 (µ)R2 (µ) e−2a/µ

(5)

+
c

2

a∫

0

dτ ′φ0 (τ ′) (E1 (|τ − τ ′|) +K (τ, τ ′))

where

f (µ) = q1 (µ)
(
e−τ/µ +R2(µ)e−(2a−τ)/µ

)

+ q2 (µ)
(
e−(a−τ)/µ +R1(µ)e−(a+τ)/µ

)

and

K (τ, τ ′) =

1∫

0

dµg(µ)
µ
(
1 −R1(µ)R2(µ)e−2a/µ

)

with

g(µ) =R1(µ)e−(τ+τ ′)/µ +R2(µ)e−(2a−τ−τ ′)/µ

+ R1 (µ)R2(µ)
(
e−(2a+τ−τ ′)/µ + e−(2a−τ+τ ′)/µ

)
.

(6)

In many practical cases, it is the surface angular distri-
butions φ (0,−µ) and φ (a, µ) which are of interest. These
can be obtained from a solution of equation (5) and inser-
tion into (4a,b). It is the solution of equation (5) and the
associated angular distributions which form the purpose
of this work. First however we note that one can define
the radiation current J(τ) as

J (τ) =

1∫

−1

dµµφ (τ, µ) (7)

where using (4a,b) we find

J (τ) =

1∫

0

dµµh (µ)
1 −R1 (µ)R2 (µ) e−2a/µ

+
c

2

a∫

0

dτ ′φ0 (τ ′) (sgn (τ−τ ′)E2 (|τ−τ ′|) +N (τ, τ ′))

(8)

with

h (µ) = q1 (µ)
(
e−τ/µ −R2(µ)e−(2a−τ)/µ

)

−q2 (µ)
(
e−(a−τ)/µ −R1(µ)e−(a+τ)/µ

)

and

N (τ, τ ′) =

1∫

0

dµk(µ)(
1 −R1(µ)R2(µ)e−2a/µ

)
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with

k(µ) = R1(µ)e−(τ+τ ′)/µ −R2(µ)e−(2a−τ−τ ′)/µ

+R1 (µ)R2(µ)
(
e−(2a+τ−τ ′)/µ − e−(2a−τ+τ ′)/µ

)
.

(9)

The form for the reflection coefficient is that due to
Fresnel [7] and can be written

Ri (µ) =
1
2

⎡
⎣
(
µ− ni

√
1 − n2

i (1 − µ2)
µ+ ni

√
1 − n2

i (1 − µ2)

)2

+

(
niµ−√1 − n2

i (1 − µ2)
niµ+

√
1 − n2

i (1 − µ2)

)2
⎤
⎦ ; µci < µ < 1

= 1; 0 < µ < µci (10)

R̃i (µ) =
1
2

⎡
⎣
(
n2

iµ−√n2
i − 1 + µ2

n2
iµ+

√
n2

i − 1 + µ2

)2

+

(
µ−√n2

i − 1 + µ2

µ+
√
n2

i − 1 + µ2

)2
⎤
⎦ ; 0 < µ < 1 (11)

R̃i

(√
1 − n2

i (1 − µ2)
)

= Ri (µ) ; µci < µ < 1 (12)

Ri

(√
1 − (1 − µ2) /n2

i

)
= R̃i (µ) (13)

where µci =
(
1 − 1/n2

i

)1/2. We also note that Ri(µ) is the
Fresnel coefficient for the case when radiation passes from
an optically dense to an optically less dense medium, and
R̃i(µ) is the reverse situation.

The source term qi (µ) in equations (3a) and (3b) needs
some explanation. This corresponds to the radiation from
the incident source ψi (µ) which has been transmitted
through the surface. Thus we can write it as

qi(µ) = n2
i (1 −Ri(µ))ψi

(√
1 − n2

i (1 − µ2)
)

×Θ (µci < µ < 1) (14)

which accounts for refraction at the surface via Snell’s
law [7]. Θ (a < µ < b) is equal to unity if a < µ < b and
zero otherwise. In addition to the above quantities, we
need the emergent angular distributions from faces τ =
0 and a. Namely,

φout(0,−µt) = R̃1(µt)ψ1 (µt) +
1
n2

1

(1 − R1(µ))φ (0,−µ)

(15)

φout(a, µt) = R̃2 (µt)ψ2 (µt) +
1
n2

2

(1 −R2(µ))φ (a, µ)

(16)

where µt =
√

1 − n2 (1 − µ2) with µc < µ < 1 and
0 < µt < 1. The presence of n2 and 1/n2 in the above
equations accounts for the solid angle effect associated
with the limited range due to µc [8,14].

There are two integral parameters of considerable im-
portance, namely the reflection coefficient Rs and trans-
mission coefficient Ts. These are defined at the face τ = 0
by

Rs (0) =

⎡
⎣

1∫

µc1

dµµ (1 −R1 (µ))φ (0,−µ)

+

1∫

0

dµµR̃1(µ)ψ1 (µ)

⎤
⎦
/ 1∫

0

dµµψ1(µ) (17a)

where the second term is the contribution from direct sur-
face reflection. If ψ1 = 0, this becomes a transmission co-
efficient related to the source at τ = a, whence

Ts(0) =

1∫

µc1

dµµ (1 −R1 (µ))φ (0,−µ)

/ 1∫

0

dµµψ2 (µ)

(17b)
By analogy, for the face at τ = a,

Rs (a) =

⎡
⎣

1∫

µc2

dµµ (1 −R2 (µ))φ (a, µ)

+

1∫

0

dµµR̃2(µ)ψ2 (µ)

⎤
⎦
/ 1∫

0

dµµψ2(µ) (18a)

and

Ts(a) =

1∫

µc2

dµµ (1 −R2 (µ))φ (a, µ)

/ 1∫

0

dµµψ1 (µ)

(18b)
But it may also be shown from these definitions and the
boundary conditions that

Rs(0)=

1∫

0

dµµψ1(µ)−J (0) , Rs(a)=

1∫

0

dµµψ2(µ)+J(a)

(19)
which are easier to evaluate numerically than (17) and
(18).

3 Analytical solution of the integral equation

For the purposes of example in this paper, we assume that
R1 = R2 = R, q2 = 0 and q1 = q. Thus the integral
equation (5) simplifies to the one derived in [1]. While
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equation (5) is open to a numerical solution, and indeed
we will return to this matter below, it is useful to see what
analytical results can be deduced. To do this we use the
method of replication [9], in which we seek a solution to
the integral equation in the following form

φ0(τ) = A0e
−ντ +B0e

ντ +

1∫

0

dω
[
A (ω) e−τ/ω +B (ω) eτω

]

(20)
Inserting this expression into equation (5) and collecting
up coefficients of e±ντ and e±τ/µ, we find the following
results.

From e±ντ , we find that ν must satisfy the transcen-
dental equation

1 =
c

2ν
log
(

1 + ν

1 − ν

)
(21)

and A(ω) and B̃(ω) = ea/ωB(ω), satisfy the following sin-
gular integral equations,

Λ (ω)A (ω) +
c

2

1∫

0

dµµA(µ)
µ− ω

=

ω∆ (ω)
c

2

1∫

0

dµA(µ)
{

µ

ω + µ

(
1 − e−(1/µ+1/ω)a

)

+
µR(ω)
µ− ω

(
e−a/µ − e−a/ω

)
e−a/ω

}

− c

2

1∫

0

dµB̃(µ)
[
µe−a/µ

ω + µ
− ω∆ (ω)

×
{

µ

µ− ω

(
e−a/µ − e−a/ω

)

+
µR(ω)
µ+ ω

(
1 − e−(1/µ+1/ω)a

)
e−a/ω

}]

− c

2
A0

[
1

1 − νω
− ω∆ (ω)

{
1

1 + νω

(
1 − e−(ν+1/ω)a

)

+
R(ω)

1 − νω

(
e−νa − e−a/ω

)
e−a/ω

}]

− c

2
B0

[
1

1 + νω
− ω∆ (ω)

{
1

1 − νω

(
1 − e−(1/ω−ν)a

)

+
R(ω)

1 + νω

(
eνa − e−a/ω

)
e−a/ω

}]

+
q(ω)

1 −R2(ω)e−2a/ω
(22)

and

Λ (ω) B̃ (ω) +
c

2

1∫

0

dµµB̃(µ)
µ− ω

=

ω∆ (ω)
c

2

1∫

0

dµB̃(µ)
{

µ

ω + µ

(
1 − e−(1/µ+1/ω)a

)

+
µR(ω)
µ− ω

(
e−a/µ − e−a/ω

)
e−a/ω

}

− c

2

1∫

0

dµA(µ)
[
µe−a/µ

ω + µ
− ω∆ (ω)

×
{

µ

µ− ω

(
e−a/µ − e−a/ω

)

+
µR(ω)
µ+ ω

(
1 − e−(1/µ+1/ω)a

)
e−a/ω

}]

− c

2
A0

[
e−νa

1 + νω
− ω∆ (ω)

{
1

1 − νω

(
e−νa − e−a/ω

)

+
R(ω)

1 + νω

(
1 − e−(ν+1/ω)a

)
e−a/ω

}]

− c

2
B0

[
eνa

1 − νω
− ω∆ (ω)

{
1

1 + νω

(
eνa − e−a/ω

)

+
R(ω)

1 − νω

(
1 − e−(1/ω−ν)a

)
e−a/ω

}]

+
q(ω)R(ω)e−a/ω

1 −R2(ω)e−2a/ω
(23)

where ∆ (ω) is defined by equation (46) and

Λ (ω) = 1 − cω

2
log
(

1 + ω

1 − ω

)
.

Equations (22) and (23) are a pair of coupled singular
integral equations. The right hand sides contain two un-
known constants A0 and B0. In order to define these it is
necessary to note that the adjoint solution of the homo-
geneous equation must be orthogonal to the right hand
sides of (22) and (23). Now if we write for convenience
equations (22) and (23) [15] as

Λ (ω)A (ω) +
c

2

1∫

0

dµµA(µ)
µ− ω

= f(ω) (24)

and

Λ (ω) B̃ (ω) +
c

2

1∫

0

dµµB̃(µ)
µ− ω

= g(ω) (25)

then the adjoint solution A†(ω) of the left hand side of
equation (24) is given by

Λ (ω)A† (ω) +
c

2

1∫

0

dµµA†(µ)
ω − µ

= 0 (26)
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It is readily shown [15] that a solution to equation (24)
can only exist if

1∫

0

dωA†(ω)f(ω) = 0 (27)

and a solution to equation (25) if

1∫

0

dωB̃†(ω)g(ω) = 0. (28)

These equations provide the necessary conditions to solve
for A0 and B0. Using the methods of complex variables,
we can show that

A†(ω) = B̃†(ω) =
cν

2
√

1 − c

ωH (ω)
1 − νω

(29)

where H (ω) is Chandrasekhar’s H-function [9].
There are are now three ways to proceed to solve the

coupled integral equations. The first is to continue with
the method of complex variables [9], in which case we can
reduce the singular integral equations (22) and (23) to
a pair of coupled non-singular integral equations involv-
ing H functions and related quantities. This then requires
extensive numerical work to find A(ω) and B̃(ω). A prac-
tical alternative is to use the FN method [10,11] which
essentially solves numerically the singular integral equa-
tions directly. Yet another method which we will use here
involves quadrature applied directly to equation (5).

4 Diffusion theory

It is of some interest to compare the above results with
those of diffusion theory as it is much simpler to use. Thus
the equation for the scalar flux intensity is [6]

φ′′0 (τ) − κ2φ0 (τ) = 0 (30)

where κ2 = 3(1 − c). The boundary conditions for the
Fresnel case, analogous to the simple form of equation (5),
can be found in [8,12] and leads to

φ0(0) − 2α
3
φ′0(0) = ψ̃ (31)

φ0(a) +
2α
3
φ′0(a) = 0 (32)

where

α =
1 + 3

1∫
0

dµµ2R(µ)

1 − 2
1∫
0

dµµR(µ)
≡ 1 + 3r2

1 − 2r1
(33)

and

ψ̃ =
4

1∫
0

dµµ(1 − R̃(µ))ψ (µ)

1 − 2
1∫
0

dµµR(µ)
≡ 4q0 (34)

The solution is readily shown to be

φ0(τ) =
4q0
Ds

[(
1 +

2ακ
3

)
e−κτ −

(
1 − 2ακ

3

)
e−κ(2a−τ)

]

(35)
where

Ds =
(

1 +
2ακ
3

)2

−
(

1 − 2ακ
3

)2

e−2κa.

We observe that this solution is similar in form to the
asymptotic part of the transport solution of equation (20)
where κ ≈ ν.

The current is, following Fick’s law, or P1 theory [6],

J(τ) = −1
3
φ′0(τ) (36)

For a general normalised incident distribution ψ (µ), we
have for the reflection and transmission coefficients,

Rd =

1∫

0

dµµR̃(µ)ψ (µ)

+
q0
Ds

[(
1 +

2ακ
3

)(
1 − 2r1 − 2κ

3
(1 − 3r2)

)

−
(

1 − 2ακ
3

)(
1 − 2r1 +

2κ
3

(1 − 3r2)
)
e−2κa

]

(37)

and

Td =
8κq0e−κa

3Ds
. (38)

For the case of a mono-directional beam, ψ (µ) =
δ (µ− µ0), we have

Rd0 = R̃(µ0)

+
q̂0

µ0Ds

[(
1 +

2ακ
3

)(
1 − 2r1 − 2κ

3
(1 − 3r2)

)

−
(

1 − 2ακ
3

)(
1 − 2r1 +

2κ
3

(1 − 3r2)
)
e−2κa

]

(39)

and

Td0 =
8κq̂0e−κa

3µ0Ds
(40)

with
q̂0
µ0

=
1 − R̃(µ0)
1 − 2r1

. (41)

It is also useful to observe that 1 − R − T is the fraction
of photons absorbed in the slab.

5 Numerical solution and discussion

5.1 Reduction of the equations to quadratures

Let us write equation (5) in the form

φ0 (τ) = S(τ) +
c

2

a∫

0

dτ ′φ0 (τ ′)M (τ, τ ′) . (42)
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We now define the average flux in the region∆τ = τi−τi−1

as

φ0i =
1
∆τ

τi∫

τi−1

dτφ0 (τ) (43)

and average equation (5) over the range ∆τ , to get

φ0i = Si +
c

2∆τ

N∑
j=1

φ0jMij ; i = 1, 2, ...N (44)

where

Si =
1
∆τ

1∫

µc

dµµq (µ)∆ (µ)
[
e−τi−1/µ

−e−τi/µ +R(µ)
(
e−(2a−τi)/µ − e−(2a−τi−1)/µ

)]
(45)

and
1

∆ (µ)
= 1 −R(µ)2e−2a/µ. (46)

The matrix element Mij is defined as

Mij =

τi∫

τi−1

dτ

τi∫

τi−1

dτ ′M (τ, τ ′) (47)

The full expression for this is in Appendix A. Equa-
tions (44) are a set of coupled linear algebraic equations
for the average fluxes and can be solved by the standard
methods of linear algebra. We have used the IMSL Fortran
Library routine DLSLSF.

Knowing the φ0i, we may use equations (4a,b) to cal-
culate the angular distributions and equations (15) and
(16) to obtain the emergent distributions. Thus

φ (0,−µ) = ∆ (µ)
[
q (µ)R (µ) e−2a/µ+

c

2

N∑
i=1

φ0i

{
e−τi−1/µ−e−τi/µ

+R(µ)
(
e−(2a−τi)/µ − e−(2a−τi−1)/µ

)} ]
(48)

and

φ (a, µ) = ∆ (µ)
[
q (µ) e−a/µ+

c

2

N∑
i=1

φ0i

{
e−(a−τi)/µ−e−(a−τi−1)/µ

+R(µ)
(
e−(a+τi−1)/µ − e−(a+τi)/µ

)}]
. (49)

We may also calculate the current J (τ) as

J (τ) =

1∫

0

dµµq(µ)
e−τ/µ −R(µ)e−(2a−τ)/µ

1 −R2 (µ) e−2a/µ

+
c

2

N∑
j=1

φ0j

τj∫

τj−1

dτ ′ (sgn (τ − τ ′)E2 (|τ − τ ′|) +N (τ, τ ′))

(50)

or more concisely as

J (τ) = Q0(τ) +
c

2

N∑
j=1

φ0j [Ej (τ) +Nj (τ)] (51)

Ej and Nj are given in Appendix A.
In the special case of a mono-directional incident

beam, we can simplify the equations somewhat as follows.
Taking ψ (µ) = δ (µ− µ0), we have from equation (14)
and the properties of the Dirac delta function,

ψ
(√

1 − n2 (1 − µ2)
)

=
µ0

n2µ̃0
δ (µ− µ̃0) (52)

where

µ̃0 =

√
1 − 1 − µ2

0

n2
.

Thus in (45),

Si =
µ0

(
1 − R̃ (µ0)

)

1 − R̃2(µ0)e−2a/µ̃0

1
∆τ

[
e−τi−1/µ̃0 − e−τi/µ̃0

+R̃(µ0)
(
e−(2a−τi)/µ̃0 − e−(2a−τi−1)/µ̃0

)]
(53)

where we have used equation (13) to set R (µ̃0) = R̃ (µ0).
Similarly, in equations (50) and (51), we have

J (τ) =
µ0

(
1 − R̃ (µ0)

)

1 − R̃2 (µ0) e−2a/µ̃0

(
e−τ/µ̃0 − R̃ (µ0) e−(2a−τ)/µ̃0

)

+
c

2

N∑
j=1

φ0j [Ej (τ) +Nj (τ)] . (54)

The transmission and reflection coefficients are

Tm =
1
µ0
J(a) (55)

and
Rm = 1 − 1

µ0
J(0). (56)

In order to examine the effect of increasing anisotropy of
the incident radiation, we use a synthetic function of the
Henyey-Greenstein type [13], viz:

ψ (µ) =
A0

(1 + g2 − 2gµ)3/2
; 0 < µ < 1 (57)

where

A0 =
g2(1 − g)

1 − g + g2 − (1 − g)
√

1 + g2
(58)

and ψ is normalised to
1∫
0

dµµψ (µ) = 1. For g = 0,

A0 = 2. Then as g → 1, the incident distribution tends to
δ (µ− 1).
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Fig. 1. Radiation flux intensity for isotropic and straight-
ahead incident source.

Fig. 2. Radiation flux intensity for isotropic incident source
for transport and diffusion theory.

5.2 Calculations

We have used Fortran and IMSL libraries to evaluate the
above sets of equations and associated expressions. This
has been done for a variety of parameters and the results
are given below. At the outset it is important to note that
all the values for n = 1, i.e. no reflection, agree with the
results given by van de Hulst [13] to 4 significant figures.
It is the values for n > 1 which are new and are presented
as benchmark values. In addition, to check conservation,
we note for the case c = 1, and arbitrary refractive index
n, that R+T = 1, i.e. there is no absorption. This result is
found to hold for up to 8 significant figures in our numer-
ical work and adds confidence to the calculations. In the
following we shall give tables and figures of some of the
more important parameters of the slab problem which we
offer as benchmarks against which to compare other meth-
ods. We also give some diffusion theory results. A further
test of consistency is obtained by setting R2 = 1 in equa-

Fig. 3. Radiation current for isotropic incident source for
transport and diffusion theory.

Fig. 4. Emergent angular distributions at faces τ = 0 and a.

tion (5). That equation then reduces to the symmetrical
case for a slab of twice the thickness.

Before giving detailed tables of important parameters,
we will show graphically some of the general features of the
solution. Thus in Figure 1, we have the radiation scalar
intensity φ0(τ) for the case a = 1, n = 4/3, c = 1 for
the two contrasting cases of a mono-directional beam at
τ = 0 and an isotropic source at τ = 0, such that in
case a) ψ (µ) = δ (µ− 1) and in case b) ψ (µ) = 2. In
both cases

∫ 1

0
dµµψ(µ) = 1. In Figure 2, we show two

cases for a = 5, n = 4/3 and c = 0.9 and c = 1.0. For
comparison purposes, we also include the diffusion result.
For c = 1, diffusion theory gives very reasonable accuracy
but for c = 0.9, there are significant deviations near the
boundary at τ = 0. Nevertheless, overall, diffusion the-
ory is often a satisfactory approximation. In Figure 3, we
have the radiation current J(τ) for a = 5, n = 4/3 and
c = 0.9 and c = 1.0 for diffusion and transport theories.
For c = 1, the current J(τ) is independent of τ because of
conservation. On the other hand, for c = 0.9, absorption
leads to attenuation. In both cases, diffusion theory is rea-
sonable. Finally, in Figure 4 we show the emergent angular
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Table 1. Reflection and transmission coefficients for a = 1,
c = 1, isotropic incident source for a range of refractive indices.

Transport Diffusion
n Rs Ts Rd Td

1.0 0.4466 0.5534 0.4286 0.5714
1.2 0.4069 0.5931 0.4366 0.5634
1.4 0.4133 0.5867 0.4701 0.5299
1.6 0.4285 0.5715 0.5009 0.4991
1.8 0.4466 0.5534 0.5270 0.4730
2.0 0.4655 0.5345 0.5493 0.4507

Table 2. Reflection and transmission coefficients for a = 1, c =
0.9, isotropic incident source for a range of refractive indices.

Transport Diffusion
n Rs Ts Rd Td

1.0 0.3527 0.4748 0.3337 0.4885
1.2 0.2952 0.4864 0.3131 0.4480
1.4 0.2818 0.4579 0.3189 0.3841
1.6 0.2794 0.4241 0.3241 0.3259
1.8 0.2827 0.3906 0.3276 0.2761
2.0 0.2895 0.3592 0.3306 0.2340

Table 3. Reflection and transmission coefficients for a = 5,
c = 1, isotropic incident source for a range of refractive indices.

Transport Diffusion
n Rs Ts Rd Td

1.0 0.7923 0.2077 0.7895 0.2105
1.2 0.7366 0.2634 0.7408 0.2592
1.4 0.7002 0.2998 0.7074 0.2926
1.6 0.6769 0.3231 0.6851 0.3149
1.8 0.6630 0.3370 0.6710 0.3290
2.0 0.6555 0.3445 0.6631 0.3369

Table 4. Reflection and transmission coefficients for a = 1,
c = 0.9, anisotropic beam with normal incidence, µ0 = 1 for a
range of refractive indices.

Transport Diffusion
n Rs Ts Rd Td

1.0 0.2674 0.5916 0.3337 0.4885
1.2 0.2343 0.5662 0.2872 0.4649
1.4 0.2231 0.5270 0.2827 0.4044
1.6 0.2230 0.4848 0.2840 0.3452
1.8 0.2297 0.4434 0.2868 0.2928
2.0 0.2409 0.4048 0.2912 0.2478

distributions from the slab faces at τ = 0 and τ = a. This
is for a = 5, n = 4/3 and c = 0.9 and c = 1.0.

Tables 1–5 list values of the reflection and transmis-
sion coefficients R and T for various slab parameters. For
comparison, both transport and diffusion theory results
are given. To illustrate the results more clearly, Figure 5
shows R and T as a function of refractive index n. An in-
teresting feature is the minimum in R and maximum in T
at around n = 1.2. We also note that diffusion theory does

Table 5. Reflection and transmission coefficients for a = 5,
c = 0.9, anisotropic beam with normal incidence, µ0 = 1 for a
range of refractive indices.

Transport Diffusion
n Rs Ts Rd Td

1.0 0.4125 0.7665 0.4635 0.5072
1.2 0.3326 0.7159 0.3417 0.5126
1.4 0.2780 0.6282 0.2742 0.4520
1.6 0.2469 0.5351 0.2386 0.3792
1.8 0.2327 0.4498 0.2232 0.3117
2.0 0.2301 0.3766 0.2209 0.2545

Fig. 5. Reflection and transmission coefficients a = 1, c = 1,
isotropicic incidence.

Fig. 6. Reflection and transmission coefficients a = 1, c = 9.

not predict the values very well, which is understandable
when it is recognised that R and T depend sensitively on
the emergent angular distributions; a feature which diffu-
sion (P1) theory does not describe very well. Nevertheless,
diffusion theory does predict the maximum and minimum
but not in the correct place. Figure 6 repeats the results
of Figure 5 but with absorption such that c = 0.9. In this
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Fig. 7. Reflection and transmission coefficients a = 5, c = 1.

Table 6. Reflection and transmission coefficients for a = 1,
c = 1, n = 4/3, anisotropic beam with varying angle of
incidencecos−1 µ0.

Transport Diffusion
µ0 Rs Ts Rd Td

0.05 0.8631 0.1369 0.8449 0.1551
0.1 0.7555 0.2445 0.7333 0.2667
0.2 0.6067 0.3933 0.5932 0.4068
0.3 0.5168 0.4832 0.5180 0.4820
0.4 0.4613 0.5387 0.4771 0.5229
0.5 0.4255 0.5745 0.4550 0.5450
0.6 0.4006 0.5994 0.4430 0.5570
0.7 0.3821 0.6179 0.4368 0.5632
0.8 0.3673 0.6327 0.4338 0.5662
0.9 0.3547 0.6453 0.4325 0.5675
1.0 0.3436 0.6564 0.4322 0.5678

case, the maximum for T is around n = 1.1 and the min-
imum for R around n = 1.5. Finally, we have Figure 7
which is for a = 5 and c = 1.0. Here there is no maximum
or minimum and diffusion theory is a very good approx-
imation. Bearing in mind that diffusion theory becomes
better for smaller absorption and slabs that are several
mean free paths thick, these results are not unexpected.
Table 5 shows R and T for an anisotropic beam with nor-
mal incidence.

Tables 6 and 7 show the reflection and transmission
coefficients for a mono-directional beam for varying val-
ues of the incident beam direction ϑ0 = cos−1 µ0. Table 6
has c = 1 and Table 7 c = 0.9. Table 8 is presented to
show how reflection and transmission coefficients vary as
the degree of anisotropy of the incident source goes from
isotropic to mono-directional, i.e. as g goes from zero to
unity. Tables 9 and 10 show the emergent angular distri-
butions from the slab faces for a range of values of the
refractive index. Table 11 shows the angular distributions
for a range of incident angle beam directions.

Table 7. Reflection and transmission coefficients for a = 1,
c = 0.9, n = 4/3, anisotropic beam with varying angle of
incidencecos−1 µ0.

Transport Diffusion
µ0 Rs Ts Rd Td

0.05 0.8160 0.0908 0.8042 0.1161
0.1 0.6783 0.1693 0.6633 0.1996
0.2 0.4962 0.2861 0.4864 0.3045
0.3 0.3914 0.3614 0.3914 0.3609
0.4 0.3298 0.4110 0.3399 0.3914
0.5 0.2925 0.4454 0.3119 0.4080
0.6 0.2688 0.4712 0.2968 0.4169
0.7 0.2529 0.4921 0.2890 0.4216
0.8 0.2414 0.5100 0.2851 0.4239
0.9 0.2326 0.5260 0.2835 0.4248
1.0 0.2253 0.5407 0.2831 0.4251

Table 8. Reflection and transmission coefficients for a = 1,
c = 0.9, n = 4/3, For varying degrees of source anisotropy
([see Eq. (57)].

Transport Diffusion
g Rs Ts Rd Td

0.0 0.2846 0.4686 0.3168 0.4051
0.2 0.2729 0.4802 0.3084 0.4101
0.5 0.2532 0.5017 0.2956 0.4176
0.7 0.2408 0.5173 0.2890 0.4216
0.8 0.2352 0.5252 0.2865 0.4231
0.9 0.2301 0.5330 0.2845 0.4242
0.99 0.2258 0.5399 0.2832 0.4250
1.0 0.2253 0.5407 0.2831 0.4251

6 Summary and conclusions

The basic problem of an internally reflective slab irradi-
ated on its surfaces is of some practical importance, as
explained in Section 1. We have shown that one can re-
duce the integro-differential equation for the angular in-
tensity to a single integral equation which incorporates
the boundary conditions. Numerical results depend there-
fore on being able to solve in a practical manner equa-
tion (5). For simplicity we have studied the case of a slab
irradiated on one side only and with the same reflection
coefficients at each surface. To solve this equation requires
some deliberation. It is tempting to seek an analytical so-
lution. Unfortunately, with this type of equation no closed
form solution is available and the best that can be done
is to reduce the problem to a set of coupled Fredholm in-
tegral equations. The kernel and source terms of these
equations depend, however, on various forms of Chan-
drasekhar’s H-function [9] and the associated numerical
work is fraught with a potential for numerical and alge-
braic errors. Even the ‘half-way house’ method using the
FN technique [10,11] requires considerable effort. For that
reason we have employed a direct numerical assault on the
integral equation (5) in which the logarithmic singular-
ity in the kernel, arising from the function E1 (|τ − τ ′|) is
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Table 9. Emergent angular distributions φout (0,−µ) and φout (a, µ) from faces 0 and a for a range of refractive indices. a = 1,
c = 1, isotropic incident source.

n 1.0 1.2 4/3 1.5 2.0
µ τ = 0 τ = a τ = 0 τ = a τ = 0 τ = a τ = 0 τ = a τ = 0 τ = a

0.0 1.5163 0.4837 2.0000 0.0000 2.0000 0.0000 2.0000 0.0000 2.0000 0.0000
0.1 1.3952 0.6048 1.4687 0.5313 1.5111 0.4889 1.5369 0.4630 1.5508 0.4492
0.2 1.2919 0.7081 1.1781 0.8219 1.2133 0.7867 1.2435 0.7565 1.2808 0.7192
0.3 1.1877 0.8123 1.0167 0.9833 1.0336 0.9664 1.0592 0.9408 1.1157 0.8843
0.4 1.0877 0.9123 0.9201 1.0799 0.9227 1.0773 0.9425 1.0575 1.0125 0.9875
0.5 0.9967 1.0033 0.8553 1.1447 0.8509 1.1491 0.8670 1.1330 0.9467 1.0533
0.6 0.9163 1.0837 0.8067 1.1933 0.8012 1.1988 0.8164 1.1836 0.9041 1.0959
0.7 0.8458 1.1542 0.7667 1.2333 0.7642 1.2358 0.7811 1.2189 0.8761 1.1239
0.8 0.7842 1.2158 0.7319 1.2681 0.7346 1.2654 0.7550 1.2450 0.8576 1.1424
0.9 0.7302 1.2698 0.7006 1.2994 0.7095 1.2905 0.7347 1.2653 0.8453 1.1547
1.0 0.6827 1.3173 0.6719 1.3281 0.6873 1.3127 0.7179 1.2821 0.8369 1.1631

Table 10. Emergent angular distributions φout (0,−µ) and φout (a, µ) from faces 0 and a for a range of refractive indices. a = 1,
c = 0.9, isotropic incident source.

n 1.0 1.2 4/3 1.5 2.0
µ τ = 0 τ = a τ = 0 τ = a τ = 0 τ = a τ = 0 τ = a τ = 0 τ = a

0.0 1.2707 0.3631 2.0000 0.0000 2.0000 0.0000 2.0000 0.0000 2.0000 0.0000
0.1 1.1378 0.4516 1.3162 0.3870 1.3567 0.3386 1.3717 0.3001 1.3429 0.2422
0.2 1.0387 0.5352 0.9645 0.6202 0.9924 0.5721 1.0064 0.5229 0.9907 0.4303
0.3 0.9468 0.6318 0.7794 0.7591 0.7827 0.7229 0.7876 0.6735 0.7862 0.5562
0.4 0.8623 0.7330 0.6761 0.8491 0.6596 0.8219 0.6547 0.7743 0.6627 0.6393
0.5 0.7873 0.8297 0.6131 0.9148 0.5850 0.8908 0.5729 0.8437 0.5868 0.6951
0.6 0.7218 0.9179 0.5702 0.9681 0.5377 0.9424 0.5218 0.8936 0.5400 0.7336
0.7 0.6650 0.9967 0.5379 1.0147 0.5058 0.9841 0.4894 0.9317 0.5115 0.7609
0.8 0.6157 1.0666 0.5115 1.0569 0.4828 1.0199 0.4682 0.9624 0.4948 0.7812
0.9 0.5726 1.1284 0.4888 1.0959 0.4651 1.0519 0.4540 0.9886 0.4858 0.7969
1.0 0.5348 1.1833 0.4686 1.1323 0.4507 1.0814 0.4440 1.0119 0.4818 0.8096

Table 11. Emergent angular distributions φout (0,−µ) and φout (a, µ) from faces 0 and a for n = 4/3, a = 5, c = 0.9, anisotropic
beam source with varying angle of incidencecos−1 µ0.*

µ0 0.1 0.2 0.5 0.7 1.0
µ τ = 0 τ = a τ = 0 τ = a τ = 0 τ = a τ = 0 τ = a τ = 0 τ = a

0.1 0.1526 0.1911 0.4630 0.0588 0.1499 0.2099 0.2096 0.3237 0.2844 0.0520
0.2 0.2315 0.2942 0.7025 0.0906 0.2275 0.3230 0.3182 0.4979 0.4321 0.8000
0.3 0.2720 0.3540 0.8254 0.1090 0.2675 0.3886 0.3744 0.5987 0.5087 0.9609
0.4 0.2916 0.3923 0.8852 0.1207 0.2871 0.4303 0.4021 0.6624 0.5471 0.1062
0.5 0.2997 0.4198 0.9100 0.1292 0.2954 0.4600 0.4142 0.7075 0.5643 0.1132
0.6 0.3014 0.4422 0.9152 0.1361 0.2974 0.4840 0.4174 0.7435 0.5697 0.1186
0.7 0.2994 0.4624 0.9093 0.1423 0.2958 0.5053 0.4157 0.7752 0.5683 0.1234
0.8 0.2954 0.4818 0.8971 0.1482 0.2922 0.5257 0.4111 0.8052 0.5630 0.1278
0.9 0.2902 0.5010 0.8815 0.1541 0.2875 0.5458 0.4049 0.8346 0.5555 0.1321
1.0 0.2844 0.5204 0.8641 0.1600 0.2822 0.5658 0.3978 0.8638 0.5468 0.1363

÷10 ÷100 ÷10 ÷10 ÷10 ÷10

* The last row shows the factor by which the value must be divided

integrated out analytically. This leads to a set of coupled
algebraic equations with relatively simple matrix elements
and there are simple methods available to solve these equa-
tions. One of the disadvantages of such an approach is that
it leaves the user with no general idea of the form of the
solution. However, as we have seen from equation (20),
such a form can be assumed and proves to be consistent
with the original integral equation. Only if the singular

integral equations (22) and (23) are solved can we obtain
A0, B0, A(ω) and B(ω). If only numerical results are re-
quired this may not be necessary. For a more fundamental
understanding of the solution, then the equation in Sec-
tion 3 should be solved by the methods outlined above. We
have also seen that diffusion theory can be useful under
certain circumstances although perhaps not for emergent
angular distributions.
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Kij = Kji =

1∫

0

dµµR(µ)∆(µ)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
e−τi/µ − e−τi−1/µ

)(
e−τj/µ − e−τj−1/µ

)
+

e−2a/µ
(
e(τi+τj)/µ − e(τi+τj−1)/µ − e(τi−1+τj)/µ + e(τi−1+τj−1)/µ

)

+R(µ)

[
e(τj−τi−1)/µ − e(τj−1−τi−1)/µ − e(τj−τi)/µ + e(τj−1−τi)/µ

+e(τi−1−τj)/µ − e(τi−1−τj−1)/µ − e(τi−τj)/µ + e(τi−τj−1)/µ

]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Nj(τ ) =

1∫

0

dµµR(µ)∆ (µ)

[
e−(τ+τj−1)/µ − e−(τ+τj)/µ − e−(2a−τ−τj)/µ + e−(2a−τ−τj−1)/µ

+R(µ)
{

e−(2a+τ−τj)/µ − e−(2a+τ−τj−1)/µ + e−(2a−τ+τj)/µ − e−(2a−τ+τj−1)/µ
}
]

Appendix A : Matrix elements referred
to in the text

Mij = Eij +Kij

where

Eii = 2∆τ − 1 + 2E3 (∆τ )

Eij = E3 (τi − τj−1) − E3 (τi − τj) + E3 (τi−1 − τj)

−E3 (τi−1 − τj−1) ; i > j

Eij = Eji ; i < j

see equation above

Ej(τ) = E3 (τ − τj) − E3 (τ − τj−1) ; τ > τj

= E3 (τj − τ ) − E3 (τj−1 − τ ) ; τ < τj−1

= E3 (τj − τ ) − E3 (τ − τj−1) ; τj−1 < τ < τj

see equation above
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